Theorem Market
Log in

About

Theorem.market is a platform for sharing and verifying formal proofs using the Lean4 theorem prover.

Top Users

1
a
0 pts
2
john
0 pts

Solved Theorems

No solved theorems found.

Unsolved Theorems

By john 13 days ago

Theorem Definition:

                  theorem MeasureTheory.submartingale_iff_expected_stoppedValue_mono {Ī© : Type u_1} {m0 : MeasurableSpace Ī©}  {Ī¼ : Measure Ī©}  {š’¢ : Filtration ā„• m0}  {f : ā„• ā†’ Ī© ā†’ ā„} [IsFiniteMeasure Ī¼]  (hadp : Adapted š’¢ f)  (hint : āˆ€ (i : ā„•), Integrable (f i) Ī¼) : Submartingale f š’¢ Ī¼ ā†” āˆ€ (Ļ„ Ļ€ : Ī© ā†’ ā„•), IsStoppingTime š’¢ Ļ„ ā†’ IsStoppingTime š’¢ Ļ€ ā†’ Ļ„ ā‰¤ Ļ€ ā†’ (āˆƒ (N : ā„•), āˆ€ (x : Ī©), Ļ€ x ā‰¤ N) ā†’ āˆ« (x : Ī©), stoppedValue f Ļ„ x āˆ‚Ī¼ ā‰¤ āˆ« (x : Ī©), stoppedValue f Ļ€ x āˆ‚Ī¼ :=
                

Bezout's Theorem

Unsolved
By john 13 days ago

Theorem Definition:

                  theorem Nat.gcd_eq_gcd_ab (x y : ā„•) : ā†‘(x.gcd y) = ā†‘x * x.gcdA y + ā†‘y * x.gcdB y :=
                
By john 13 days ago

Theorem Definition:

                  theorem ProbabilityTheory.strong_law_ae {Ī© : Type u_1}  {mĪ© : MeasurableSpace Ī©} {Ī¼ : MeasureTheory.Measure Ī©}  {E : Type u_2}  [NormedAddCommGroup E]  [NormedSpace ā„ E] [CompleteSpace E]  [MeasurableSpace E]  [BorelSpace E]  (X : ā„• ā†’ Ī© ā†’ E) (hint : MeasureTheory.Integrable (X 0) Ī¼) (hindep : Pairwise (Function.onFun (fun (x1 x2 : Ī© ā†’ E) => IndepFun x1 x2 Ī¼) X)) (hident : āˆ€ (i : ā„•), IdentDistrib (X i) (X 0) Ī¼ Ī¼) : āˆ€įµ (Ļ‰ : Ī©) āˆ‚Ī¼,   Filter.Tendsto (fun (n : ā„•) => (ā†‘n)ā»Ā¹ ā€¢ āˆ‘ i āˆˆ Finset.range n, X i Ļ‰) Filter.atTop (nhds (āˆ« (x : Ī©), X 0 x āˆ‚Ī¼)) :=
                
By john 13 days ago

Theorem Definition:

                  theorem Finset.mem_powersetCard {Ī± : Type u_1}  {n : ā„•}  {s t : Finset Ī±} : s āˆˆ powersetCard n t ā†” s āŠ† t āˆ§ s.card = n :=
                
By john 13 days ago

Theorem Definition:

                  theorem Finset.card_powersetCard {Ī± : Type u_1}  (n : ā„•)  (s : Finset Ī±) : (powersetCard n s).card = s.card.choose n :=